
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Typed behavioural equivalences for

processes in the presence of subtyping

Typed behavioural equivalen
es for pro
esses

in the presen
e of subtyping

Matthew Hennessy and Julian Rathke

Abstra
t. We study typed behavioural equivalen
es for the �-
al
ulus, in whi
h the

type system allows a form of subtyping. This enables pro
esses to sele
tively distribute

di�erent
apabilities on
ommuni
ation
hannels.

The equivalen
es
onsidered in
lude typed versions of testing equivalen
es and

barbed bisimulation equivalen
es.

We show that these
an be
hara
terised via standard te
hniques applied to a novel

labelled transition system of
on�gurations. These
onsist of a pro
ess term together

with two related type environments; one
onstraining the pro
ess and the other its

omputing environment.

1

1 Introdu
tion

Type systems are playing an in
reasingly important role in the theory of

distributed systems. They are essentially a form of stati
 analysis whi
h

help in the elimination of run-time errors from programs. Within the

theory of distributed systems this intuitive notion of run-time error has

been extended to in
lude a diverse range of properties. For example in

[12, 3℄ type systems have been designed to dete
t potential deadlo
ks

while [18℄ introdu
ed a system of types for the �-
al
ulus whi
h are used

to
ontrol the interpretation of the �-
al
ulus. This system of types was

extended further in [17℄ and now forms the basis for the powerful type

system implemented in the programming language Pi
t, [19℄; related type

systems for higher-order
on
urrent languages may be found in [10, 11℄.

In papers su
h as [21, 20℄ types have been used to manage a

ess
ontrol

to resour
es, while in [22℄ notions of trust have been in
orporated in order

to prote
t good host sites from bad
omputing agents.

Sub-typing is an essential part of most of these systems. For example

in Pi
t (a

ording to [19℄, page 9) it is relatively rare for
ommuni
ation

hannels to be used for both input and output in the same \region" of a

program. Typi
ally servers have one form of a

ess while
lients require a

di�erent form. These a

ess requirements
an be implemented and man-

aged using a subtype relation on the set of types. For example a parti
ular

hannel may be de
lared with a type whi
h allows both read and write

1

Resear
h partially funded by EPSRC grant GR/M71169

2 Matthew Hennessy and Julian Rathke

a

ess; this
hannel
ould be passed to one pro
ess, say a server, at a sub-

type whi
h only allows read, or input a

ess, and passed to a
lient at a

di�erent subtype, allowing write, or output a

ess only. Indeed in papers

su
h as [21, 25℄ types are viewed as sets of
apabilities, su
h as read a

ess

and write a

ess, and sending a name to a pro
ess at a subtype amounts

to sending it with a subset of the de
lared
apabilities.

The subje
t of this paper is the investigation of behavioural equiva-

len
es for typed pro
ess languages, parti
ularly in the

Typed behavioural equivalen
es for pro
esses in the

4 Matthew Hennessy and Julian Rathke

T; U ::= Terms

u?(X : A)T Input

u!hviT Output

if u = v then T else U Mat
hing

(new n : A) T Name Creation

T j T Con
urren
y

�T Repetition

0 Termination

X;Y ::= Patterns

x variable

(X

1

; : : : ; X

n

) tuple

u; v; w ::= Values

bv base value

n name

x variable

(u

1

; : : : ; u

n

) tuple

Figure 1. The Syntax

review our version of the �-
al
ulus, whi
h uses a set of types derived from

those in [21℄, although they are only a minor variation of those from [18℄;

the se
tion
ontains a standard operational semanti
s, in terms of an lts,

that is a labelled transition system, a type inferen
e system and a state-

ment of Subje
t Redu
tion. In Se
tion 3 we de�ne the typed behavioural

equivalen
es whi
h are the main
on
ern of the paper. This is followed by

the prin
ipal se
tion of the paper, Se
tion 4, where we de�ne the set typed

a
tions whi
h gives rise to the lts Conf ; this se
tion also
ontains an anal-

ysis of Conf and proofs of the various properties we require of it. This

is followed by two te
hni
al se
tions, Se
tion 5 whi
h
ontains a
hara
-

terisation of the typed testing equivalen
es, and Se
tion 6

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping

6 Matthew Hennessy and Julian Rathke

(l-out)

a!hviP

a!v

��! P

(l-in)

a?(X : A)P

a?v

��! Pfjv=X jg

(l-open)

P

(~
:

~

C)a!v

�����! P

0

(new 4-

Typed

8 Matthew Hennessy and Julian Rathke

(t-id)

�(u) <: A

� ` u : A

(t-base)

bv 2 Base

� ` bv : Base

(t-tup)

� ` v

i

: A

i

(8i)

� ` (v

1

; : : : ; v

k

) : (A

1

; : : : ;A

k

)

(t-in)

�; X : A ` T

� ` u : rhAi

� ` u?(X : A)T

(t-out)

� ` u : whAi

� ` v : A

� ` T

� ` u!hviT

(t-eq)

� ` u : A; v : B

� ` U

� u fu : B; v : Ag ` T

� ` if u = v then T else U

(t-new)

�; a : A ` T

� ` (new a : A) T

(t-str)

� ` T; U

� ` T j U; �T; 0

Figure 4. The Typing Rules

of the �-
al
ulus has name mat
hing and therefore a name at type >
an

be
ompared to other names.

Thus our types are a generalisation of those introdu
ed in [18℄. The

subtyping relation <:
an also be viewed as the obvious generalisation of

their subtyping relation. In fa
t our types, and our subtyping relation,

are a mild variation of those used in [21℄, to whi
h the reader is referred

for more details, parti
ularly with respe
t to the following result:

Proposition 2.1 The set of types Types is a preorder with respe
t to <:,

with both a partial meet operation u and a partial join t. 2.

The essential point here is that if two types A

1

;A

2

are bounded below,

that is B <: A

1

; B <: A

1

for some type B then they have a greatest lower

bound, A

1

uA

2

. Intuitively A

1

uA

2

is the \union of the
apabilities" in A

1

and A

2

. Be
ause the write
apability wh�i is
ontravariant with respe
t

to <: the de�nition of u requires the existen
e of a partial join t.

We now present the type inferen
e rules for pro
ess terms in Figure 4.

The judgements are of the form � ` T where � is a type environment, that

is a �nite mapping from identi�ers, variables and names, to types.

For an identi�er id we write �; id : A for the type environment obtained

by augmenting � so as to map id to A; this notation is only de�ned if id

is not already in the domain of �. More generally we use � u id : A to

mean the type environment �; id : A if id is not in the domain of � and �

0

otherwise, where �

0

is equal to � ex
ept possibly at id, where �

0

takes the

value �(id) u A (if de�ned). This notation is generalised in the obvious

way to values. We will often write � for
losed type environments whose

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 9

domain
onsists solely of names.

The reader familiar with the input/output
apability types of �-
al
ulus,

[18℄, should �nd little surprise in the inferen
e rules ex
ept perhaps for the

type rule for
onditionals, taken from [21℄:

(t-eq)

� ` u : A; v : B

� ` U

� u f

12 Matthew Hennessy and Julian Rathke

ne
essarily known to the
urrent type environment �, although it does not

allow us to extend the types of values whi
h are already in the domain

of �. However even on
losed terms there may be a di�eren
e between a

relation R and its open extension R

o

; in general for � j= P R

o

Q to be

true we must have �;�

0

j= P R Q for every allowed �

0

. Note that this is

a form of weakening.

De�nition 3.3 A typed relation R is said to
losed with respe
t to weak-

ening, or w-
losed, if R

o

= R.

All the behavioural equivalen
es we will
onsider will be w-
losed. to

de�ne these we need to
onsider a number of properties of typed relations.

Redu
tion
losed: The typed relationR is redu
tion
losed whenever

� j= P R Q and P

�

�! P

0

implies there exists some Q

0

su
h that Q =) Q

0

and � j= P

0

R Q

0

.

Contextual: Contexts are de�ned by extending the syntax in Figure 1,

allowing typed holes [�

�

℄ in terms. The typing system in Figure 4 is ex-

tended to
ontexts in the obvious way, by adding the rule

(t-
xt)

�;�

0

` [�

�

℄

We use C[℄ to denote
ontexts with at most one hole and C[T ℄ the term

whi
h results from substituting the term T into the hole. We leave the

reader to establish

Proposition 3.4 �

0

` T and � ` C[�

�

0

℄ implies � ` C[T ℄. 2

Then we say the typed relation R is
ontextual whenever �

0

j= T R

o

U

and � ` C[�

�

0

℄ implies � j= C[T ℄ R

o

C[U ℄.

Unravelling this de�nition gives the following example
onsequen
es

for
ontextual relations over
losed terms.

� � j= P R P

0

implies �;�

0

j= P R P

0

� � j= P R P

0

and � ` Q implies � j= P jQ R P

0

jQ.

� � j= P R P

0

and � ` a!hvi 0 implies � j= a!hviP R a!hviP

0

.

� If � ` a : rhAi and for every v, �

0

, su
h that �;�

0

` v : A we have

�;�

0

j= Tfjv=Xjg R Ufjv=X jg then �;�

0

j= a?(X : A)T R a?(X : A)U .

� �; a : A j= P R P

0

implies � j= (new a : A) P R (new a : A)

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 13

that �;�

0

` v : A; this in
ludes values v whi
h are not known in the

urrent environment �.

Barb Preserving: For a given name a su
h that � ` a : rwh>i. we

write � j= P +

barb

a if there exists some P

0

su
h that P

�

�!

�

P

0

and

P

0

a!hi

��!. Then we say the typed relationR is barb preserving if � j= P R Q

and � j= P +

barb

a implies �

14 Matthew Hennessy and Julian Rathke

(tylts-red)

P

�

�! P

0

I; � ` P

�

�! I; � ` P

0

(tylts-out)

I

r

(a) #

I; � ` a!hviP

a!v

��! I u v : I

r

(a);� ` P

(tylts-in)

I

w

(a) # I ` v : I

w

(a)

I; � ` a?(X : A)P

a?v

��! I; � ` Pfjv=Xjg

(tylts-open)

I; b : >; �; b : B ` P

(~
)a!v

���! I

0

; �

0

` P

0

I; � ` (new b : B) P

(be
)a!v

����! I

0

; �

0

` P

0

b 6= a

b 2 fn(v)

(tylts-
txt)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` �P

�

�!
I

0

; �

0

` �P j P

0

(tylts-equiv)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � `Q

�

�!
I; �

0

` P

0

P �

�

Q

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` P jQ

�

�! I

0

; �

0

` P

0

jQ

I; � `Q j P

�

�! I

0

; �

0

`Q j P

0

0

`

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 15

� I is
ompatible with �

� � ` T

The environment I represents the environment's view of the types allo-

ated to the names in the pro
ess. For this reason this view must a

ord

with the a
tual types allo
ated to these names. This is guaranteed by

requiring I :> � where � is the a
tual type
ontext for the term under

investigation. Essentially this says that the environment
annot know
a-

pabilities for a
hannel whi
h simply do not exist. The requirement that

the domains of the environments be the same is a te
hni
al means of en-

suring uniqueness of fresh names. We use Conf , ranged over by C;D, to

denote the set of all
on�gurations.

The generating rules for the transition system of typed a
tions are de-

�ned in Figure 5 and are to be understood as a
ting on
on�gurations.

The rules are obtained from those in Figure 2 by taking the type envi-

ronment of the
omputing
ontext, I, into a

ount; essentially a
tions are

only possible if they are allowed by I. Note also that the type annotations

on the bound names of output a
tions are dropped; they are only required

in Figure 2 for the de�nition of the untyped redu
tion relation

�

�!.

Note also that a priori the rule (tylts-out) is partial in the sense that

the
on
lusion
an only be formed if the extended environment Iuv : I

r

(a)

is well de�ned. However the �rst part of the next Proposition establishes

that this meet always exists. It also proves that the set of
on�gurations

is preserved by the transitions.

Proposition 4.2

16 Matthew Hennessy and Julian Rathke

This means that �(v) <: A (by (ii)), and that A <: �

w

(a) (by (i)). We

know that I

r

(a) # and, as I :> �, thus �

r

(a) # also. By virtue of being

a well-formed type it must be the
ase that �

w

(a) <: �

r

(a)

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 17

We leave the reader to
he
k that

Lemma 4.4 If I; �

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 19

For the
onverse, part (ii), we use the
ase � = a?b as an illustrative

example. Suppose then that I; Æ : rwh(I)i ` C

I

�

and

P j C

I

�

=) P

0

j Æ!hv

0

i

for some v

0

. It must be the
ase, as Æ is fresh to P , that v

0

is v

I

and,

by analysis of the redu
tion rules, that P =)

a?b

��!=) P

0

. Now, we know

that I; Æ : rwh(I)i ` C

I

�

so from this we
an dedu
e that this must have

been inferred from I ` a : whBi and I ` b : B for some type B su
h that

B <: I

w

(a). This ensures I

w

(a) # and I ` b : I

w

(a), allowing us to apply

Lemma 4.3 to obtain the required

I; � ` P =)

a?b

��!=) I; � ` P

0

2I

20 Matthew Hennessy and Julian Rathke

Proposition 5.2 The relations

�

<

may

and

�

=

must

over
on�gurations are

w-
losed.

Proof: A simple
orollary of Lemma 2.3. 2

We now give alternative
hara
terisations to these behavioural preorders.

5.1 May Testing

Typed a
tions are extended to typed tra
es a straightforward manner:

� I; � ` P

"

=) I; � ` P

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

00

`P

00

implies I; �`P

s

=)

I; �

00

` P

00

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

0

`P

00

implies I; �`P

��s

=)

I; �

00

` P

00

The
hara
terisation depends on a De
omposition and Composition result

for these sequen
es. This requires an asymmetri
 de�nition of
omplemen-

tary a
tion. For a visible a
tion � we let � denote a!v if � is a?v and a?v if

� has the form (~
 :

~

C)a?v. Thus � transforms an a
tion from the untyped

semanti
s in Figure 2 to one from the typed semanti
s in Figure 5. It is

extended to sequen
es in the natural way.

Theorem 5.3 (Tra
e De
omposition) Suppose T j P

�

�!

�

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 21

Output from P to T : Here we have

T j P

�

�! (new

~

d :

~

D) (T

0

j P

0

)

�

�!

�

(new

~

d :

~

D) R

0

where

T

a?v

��! T

0

P

(

~

d:

~

D)a!v

�����! P

0

:

Again we
an apply Subje
t Redu
tion to the �rst a
tion to obtain

I

r

(a) # and we
an apply the third part of Lemma 4.3, this time to

obtain the typed a
tion I; � ` P

(

~

d:

~

D)a!v

�����! I u v : I

r

(a);�;

~

d :

~

D `Q

Also, sin
e I u v : I

r

(a) is de�ned, Subje
t Redu
tion gives I u v :

I

r

(a) ` T

0

and so we
an apply indu
tion to the sequen
e T

0

jP

0

�

�!

�

R

0

to obtain the remainder of the typed tra
e.

2

Note that this result is not true if T
ontains any o

urren
es of (new n) ().

Example 5.4 Suppose T; P represent the terms (new
 : C) a!h
i
?() T

0

and a?(x) x!hiP

0

respe
tively, where C is the type rwhi, and suppose that

I and � are
ompatible environments su
h that I ` T , � ` P and I

r

(a) =

�

r

(a) = whi; these are easy to
onstru
t. Then the derivation T jP

�

�!

�

�!

(new
 : C) T

0

j P

0

an not be de
omposed.

This is a
onsequen
e of the assumption built into our
on�gurations

I; � ` P , that I <: �.

Theorem 5.5 (Tra
e Composition) Suppose I; �

22 Matthew Hennessy

Typed

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 25

� I ` A(s;D)

� Q 6must A(s;D) be
ause of the derivation from Q whi
h gives rise to

the a

eptan
e set D

� but by
onstru
tion P must A(s;D); note this holds even in the
ase

when A

(I; � ` P; s) is empty.

2

6 Bisimulation

We now des
ribe our
hara
terisation of the
o-indu
tively de�ned be-

havioural equivalen
e,

�

=

xt

obs

, outlined in Se
tion 3.2.

First we re
all the de�nition of weak bisimulation from [13℄.

De�nition 6.1 Given a labelled transition system T , we say that a binary

relation R on T is a bisimulation if whenever n R m then

� if n

�

�! n

0

then there exists a m

�̂

=) m

0

su
h that n

0

R m

0

� if m

�

�! m

0

then there exists a n

�̂

=) n

0

su
h that n

0

R m

0

where �̂ is ", the empty string, if � is � and � otherwise.

Our intention is to show that

�

=

xt

obs

an be
hara
terised in terms of a

bisimulation over Conf .

However as in Se
tion 5 we have a mismat
h between the formalisation

of this relation,

�

=

xt

obs

, in Se
tion 3.2, whi
h only uses one type environment,

of the pro
ess being observed, and that of bisimulation equivalen
e, whi
h

uses two type environments. As with testing, we re
on
ile this di�eren
e

by extending the de�nition of

�

=

xt

obs

so that it takes into a

ount both

environments.

First we generalise De�nition 3.2 by now saying that an (extended)

typed relation is a familyR of relations over typed pro
esses, parametrised,

as before, by
losed type environments, whi
h satis�es: (� ` P) R

I

(�

0

`

Q) implies I; � ` P and I; � ` Q are
on�gurations: To
onform to

our previous notation we write this as

I j= (� ` P) R (�

0

` Q):

although e�e
tively these are restri
ted forms of relations over
on�gura-

tions.

De�nition 6.2 Let (typed) bisimulation equivalen
e be the largest typed

relation � whi
h is

26 Matthew Hennessy and Julian Rathke

� a weak bisimulation

� w-
losed, that is satisfying I j= (� ` P) R (�

0

` Q) implies I;�

00

j=

(�;�

00

` P) R (�

0

;�

00

` Q)

Bisimulation equivalen
e will be written as

I j= (� ` P) � (�

0

` Q):

Note that the se
ond requirement is required be
ause we have already seen

that

�

=

xt

obs

is w-
losed. Intuitively its in
lusion allows environments to pass

new values to pro
esses under investigation.

Two natural properties of (typed) bisimulation equivalen
e is given in

the following proposition:

Proposition 6.3 Suppose I j= (� ` P) � (�

0

` Q). Then

� for any appropriate �

00

, I;�

00

j= (�;�

00

` P) � (�

0

;�

00

` Q).

� If I <: I

0

then I

0

j= (� ` P) � (�

0

` Q)

Proof: The �rst result is simply a re-iteration of the fa
t that � is w-

losed. Intuitively the se
ond property is true be
ause I
onstrains the

behaviour under whi
h P and Q are
ompared. If they are equivalent

under the
onstraint I then they should remain equivalent when they are

onstrained further, by I

0

. To prove it formally let the familyR be de�ned

by

I

0

j= (� ` P) R (�

0

` Q)

if I j= (� ` P) � (�

0

` Q) for some I <: I

0

. This family is w-
losed by

de�nition, and it is straightforward to show that it is a bisimulation. It

follows that R � �, pointwise, from whi
h the result follows. 2

Let us now turn our attention to giving a similar formulation to

�

=

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 27

(
xt-spe
)

I j= (� ` P) R (�

0

` Q); I <: I

0

I

0

j= (�;` P) R (�

0

;` Q)

(
xt-weak)

I j= (� ` P) R (�

0

` Q)

I;�

00

j= (�;�

00

` P) R (�

0

;�

00

` Q)

(
xt-in)

I ` a : rhAi

I;�

00

j= (�;�

00

` T [v=X℄) R (�

0

;�

00

` U [v=X℄); whenever I;�

00

` v : A

I j= (� ` a?(X : A)T) R (�

0

` a?(X : A) :U)

(
xt-out)

I ` u : whAi

I ` v : A

I j= (� ` P) R (�

0

` Q)

I j= (� ` u!hviP) R (�

0

` u!hviQ)

(
xt-mat
h)

� ` u : A; v : A

0

�

0

` u : B; v : B

0

I j= (� ` P

0

) R (�

0

` Q

0

)

I j= (� u fu : A

0

; v : Ag ` P) R (�

0

u fu : B

0

; v : Bg ` Q)

I j= (� ` if u = v then P else P

0

) R (�

0

` if u = v then Q else Q

0

)

(
xt-new)

I; a : > j= (�; a : A ` P) R (�

0

; a : A ` Q)

I j= (� ` (new a : A) P) R (�

0

` (new a : A) Q)

(
xt-par)

I j= (� ` P) R (�

0

` Q)

I ` R

I j= (� ` P jR) R (�

0

` Q jR)

I j= (� ` R j P) R (�

0

` R jQ)

(
xt-iter)

I j= (� ` P) R (�

0

` Q)

I j= (� ` �P) R (�

0

` �Q)

Figure 6. Contextuality for indexed relations over
on�gurations

28 Matthew Hennessy and Julian Rathke

however that the �rst two rules, (
xt-spe
) and (
xt-weak), automat-

i
ally build in spe
ialisation and weakening properties, respe
tively. This

may seem arti�
ial but is justi�ed by the following result, whi
h shows

that we do indeed have a generalisation of the de�nition of

�

=

xt

obs

from

Se
tion 3.2:

Proposition 6.4 � j= (� ` P)

�

=

xt

obs

(� ` Q) if and only if � j= P

�

=

xt

obs

Q.

Proof: We �rst show the if dire
tion. De�ne a typed relationR by letting

I j= (� ` P) R (� ` Q)

if � j= P

�

=

xt

obs

Q and � <: I. R is symmetri
, redu
tion
losed and

barb preserving. Using the fa
t that

�

=

xt

obs

, as a family of relations over

pro
esses, is
ontextual, we
an show that it satis�es all of the rules in

Figure 6.

Therefore R is
ontained pointwise in

�

=

xt

obs

, from whi
h the result

follows, sin
e � j= P

�

=

xt

obs

Q implies � j= (� ` P) R (� ` Q).

The
onverse is similar. Let the family of relations R, over pro
esses,

be de�ned by

� j= P R Q if � j= (� ` P)

�

=

xt

obs

(� ` Q):

Here the result will follow if we
an show that R is
ontained pointwise

in

�

=

xt

obs

, whi
h in turn will follow if we
an show that R satis�es all the

de�ning properties of

�

=

xt

obs

. The proof that it is symmetri
, redu
tion

losed and barb preserving is straightforward.

It remains to show
ontextuality, that �

0

j= T R

o

U and � ` C[�

�

0

℄

implies � j= C[T ℄ R

o

C[U ℄. This is proved by indu
tion on the derivation

of � ` C[�

�

℄, using the rules in Figure 6. Note that the rule (
xt-spe
)

is essential in the proof of the
ase in whi
h the
ontext is dedu
ed using

(t-new).

2

The remainder of this se
tion is devoted to showing that this gener-

alised
ontextual equivalen
e
oin
ides with weak bisimulation on Conf ;

that is I j= (� ` P)

�

=

xt

obs

(�

0

` Q) if and only if I j= (� ` P) � (�

0

` Q).

6.1 Soundness

First let us show that typed bisimulation equivalen
e is preserved, in some

appropriate manner, by the prin
ipal operators of the language.

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 29

Proposition 6.5 If I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q) then

I j= (� ` (new a : A) P) � (�

0

` (new a : A) Q).

Proof: Let the relation R over typed pro
esses be de�ned by

I j= (� ` R) R (� ` S)

if

� I j= (� ` R) � (� ` S)

� or R S, have the form (new a : A) P; (new a : A) Q, respe
tively, and

I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q).

Then R is w-
losed by de�nition. We show it is a bisimulation,

from whi
h the result will follow sin
e we will have established that,

pointwise, R is
ontained in �.

We show how every possible move from I; � ` R
an be mat
hed

by one from I; � ` S. The only non-trivial
ases are when R; S have

the se
ond form above. From the de�nition of typed a
tions in Figure 5

there are two possibilities.

1. The move is inferred using the rule (tylts-open):

I; � ` (new a : A) P

(a)�

��! I

0

; �

�

` P

0

30 Matthew Hennessy and Julian Rathke

where a 62

n

(�).

Here the proof is similar. We
an �nd a mat
hing move from I; a :

>; �

0

; a : A ` Q and then use (tylts-
txt) to obtain the required

mat
hing move from I; � ` (new a : A) Q.

2

Proposition 6.6 Suppose I ` R. Then I j= (� ` P) � (�

0

` Q) implies

I j= (� ` P jR) � (�

0

` Q jR).

Proof: Here, be
ause of the possible internal
ommuni
ations between R

and P; Q, the required de�nition of the relation over typed pro
esses is

somewhat
ompli
ated.

De�ne the relation R su
h that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

if and only if there exists an I

0

ompatible with �

0

and �

0

0

su
h that

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q) and I; I

0

` R

and show that R forms a bisimulation.

Suppose then that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

and that

I; � ` P jR

�

�! I

0

; �

00

` P

0

:

This presupposes the existen
e of an environment I

0

ompatible with both

�

0

and �

0

0

with the properties outlined in the de�nition of R . If � is a not

a � -a
tion then we know that the transition derives either from P or from

R. In either
ase, we
an use the hypothesis to obtain a
orresponding

transition from Q or from R again. So, the interesting
ase is when � is a

� a
tion. Consider how this
an o

ur:

(i) P or R performs a � a
tion independently.

(ii) P

(~
:

~

C)a!v

�����! P

0

and R

a?v

��! R

0

so that P

0

is (new�

0

; ~
 :

~

C) P

0

j R

0

for

some

~

C.

(iii) P

a?v

��! P

0

and R

(~
:

~

C)a!v

�����! R

0

so that P

0

is (new�

0

; ~
 :

~

C) P

0

jR

0

Obviously the �rst
ase (i) is treated as the
ase above when � is not a �

a
tion.

32 Matthew Hennessy and Julian Rathke

and, again by Subje
t Redu
tion, Theorem 2.2, it is easy to see that

I

+

` R

0

, when
e

I j= (� ` (new�

0

; ~
 :

~

C) P

0

jR

0

) R (�

0

` (new�

0

0

; ~
 :

~

C) Q

0

jR

0

)

as required.

2

We now have most of the ingredients to prove:

Theorem 6.7 (Soundness)

If I j= (� ` P) � (�

0

` Q) then I j= (� ` P)

�

=

xt

obs

(�

0

` Q):

Proof: It is easy to see that � is a redu
tion
losed, symmetri
 and barb

preserving relation over typed pro
esses. If we
an demonstrate that it

is also
ontextual then, be
ause of the the fa
t that

�

=

xt

obs

is the largest

su
h relation we have our result. Therefore we only have to prove that �

satis�es all the rules in Figure 6.

The rules (
xt-spe
) and (
xt-weak) are
overed by Proposition 6.3,

while (
xt-new) and (
xt-par) have just been established in the previous

two Propositions. The remaining rules
an be handled in a similar manner,

by setting up an appropriate w-
losed relation over typed pro
esses and

showing it is a bisimulation.

2

6.2 Completeness

Here we show the
onverse of Theorem 6.7,
ompleteness, namely that

ontextual equivalen
e implies bisimularity. To do so we only need a re-

stri
ted version of
ontextual equivalen
e. Let

�

=

p-
xt

obs

denote the largest

relation over
on�gurations whi
h is redu
tion
losed, barb preserving and

ontextual with respe
t to parallel and new name
ontexts, that is satis-

�es the rules (
xt-spe
), (
xt-weak), (
xt-par) and (
xt-new) from

Figure 6. It is
lear that

�

=

xt

obs

implies

�

=

p-
xt

obs

so, in fa
t, it suÆ
es to prove

ompleteness for the latter and we shall use this relation from now on.

Before we prove this theorem it will be useful to present a te
hni
al

lemma. It is here that we utilize the exported names in the terms whi
h

witness the
ontextuality of labels. Essentially, the lemma states that the

environment really
an
ollate the information gained via the lts.

Lemma 6.8 Suppose I

0

is
ompatible with �; ~
 :

~

C and �

0

; ~
 :

~

C and Æ is

fresh to P;Q. Then

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 33

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new ~
 :

~

C) P j Æ!v

I

0

)

�

=

p-
xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new ~
 :

~

C

0

) Q j Æ!v

I

0

)

implies

I

0

j= (�; ~
 :

~

C ` P)

�

=

p-
xt

obs

(�

0

; ~
 :

~

C

0

` Q):

Proof: We prove this by
o-indu
tion. Let the relation R

I

0

be de�ned

for I

0

ompatible with �;�

0

and �

0

;�

0

0

, so that

I

0

j= (�;�

0

` (new�

1

) P) R (�

0

;�

0

` (new�

0

1

) Q)

if and only if there is some Æ : rwh(I

0

)i su
h that

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new�

0

;�

1

) P j Æ!hv

I

0

i)

�

=

p-
xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new�

0

0

;�

0

1

) Q j Æ!hv

I

0

i):

We simply need to show that R is redu
tion
losed, barb preserving,

and
losed with respe
t to rules (
xt-spe
), (
xt-weak), (
xt-par)

and (
xt-new). Redu
tion
losure is immediate by the de�nition of R ,

as is
losure with respe
t to (
xt-spe
) and (
xt-weak). For the other

requirements we pro
eed by supposing that

I

0

j= (�;�

0

` P) R (�

0

;�

0

0

` Q)

su
h that Æ : rwh(I

0

)i with

I; Æ j= (�; Æ ` (new�

0

) P j Æ!hv

I

0

i)

�

=

p-
xt

obs

(�

0

; Æ ` (new�

0

0

) Q j Æ!hv

I

0

i):

In the above equation, for the sake of presentation, we have omitted, and

shall
ontinue to do so for the remainder of this proof, to give the type

information asso
iated with the barb Æ.

We �rst show
losure with respe
t to (
xt-par). Suppose I

0

` R. We

need to show that I

0

j= (�;�

0

` P j R) R (�

0

;�

0

0

` Q j R). To do this

we
hoose some fresh Æ

0

and
onstru
t R

0

= Æ?(X : I

0

) (R[X=

n

(I

0

)℄ jÆ

0

!hi)

(re
all that

n

(�) refers to the names in the domain of �). It should be

evident that Æ; Æ

0

` R

0

and, by
losure of

�

=

p-
xt

obs

with respe
t to (
xt-spe
),

(
xt-weak), (
xt-new) and (
xt-par) we

34 Matthew Hennessy and Julian Rathke

and similarly for Q. Hen
e,

I; Æ

0

j= (�; Æ

0

` (new�

0

) P jRjÆ

0

!hv

I

0

i)

�

=

p-
xt

obs

(�

0

; Æ

0

` (new�

0

0

) QjRjÆ

0

!hv

I

0

i)

This serves to witness

I

0

j= (�;�

0

` P jR) R (�

0

;�

0

0

` Q jR)

as required.

The
losure of R with respe
t to (
xt-new) follows easily from the

losure of

�

=

p-
xt

obs

with respe
t� j

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 35

We
hoose a fresh Æ : A

Æ

where A

Æ

denotes rwh(I

0

)i, and use Propo-

sition 4.6 to �nd a term su
h that I; Æ : A

Æ

` C

I

�

with the appropriate

properties. In fa
t, the �rst property tells us that

I; Æ : A

Æ

; �; Æ : A

Æ

`P j C

I

�

=) I; Æ : A

Æ

; �; Æ : A

Æ

` (new ~
 :

~

C) (P

0

j Æ!hv

I

0

i)

Using C

I

�

we
an build a test term by
hoosing further fresh names

Æ

0

: A

Æ

; a : rwh>i and letting

C

Æ

0

= a!hi j Æ?(x) a?(y) :Æ

0

!hxi

we note immediately that C

Æ

0

+

barb

a.

From
ontextual
losure (omitting some type information) we know

that

I; Æ

0

j= (�; Æ

0

` (new Æ) (P j C

I

�

j C

Æ

0

))

�

=

p-
xt

obs

(�

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

0

))

We also know that the left hand side of this equation may redu
e (up to

a minor stru
tural equivalen
e) to

I; Æ

0

; �; Æ

0

` (new ~
 :

~

C) P

0

j Æ

0

!hv

I

0

i :

We use C

P

to refer to this
on�guration and observe that C

P

6+

barb

a but

C

P

+

barb

Æ

0

.

Redu
tion
losure now tells us that there must exist some mat
hing

redu
tions

I; Æ

0

; �

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

�

(Tj
/R217 0.12 Tf
7.2 0 Td
())Tj
18161 0.12 Tf
12 3602 0 Td
(thTj
/R275 0.12 Tf
10.2 16 2.16077 Td
(.)Qj
/R55 0.12 Tf
-33847192.13602 0
(.)r)Tj
1821602 0 Td
(clme)Tj
37161 0.12 Tf
3.90 Td
(C)Tj
/R275 0.12 Tf
10.2 16 2.16077 Td
(.)Qj
/R55 0.12 Tf
-3.5193 0 .15977 Td
(6suc)2998.66(h)]TJ
33.2 0 Td
(this)Tj
/R161 0.12 Tf
30.0801 0 Td
(teTj
/R275 0.12 Tf
10.2 16 2.16077 Td
(.)Tj
/R217 0.12 Tf
13.559f
-0Cosure)Tj
Tj
/R2855 0.12 Tf
4.68008326 0.12 Tf
11.1598 -6.osur4 Td87969/R28j
0 11.1602 Td
(Reducti/R55 0.122 Tf
30.9602 0
[(W)-4 Td
(4Tj
/R275 0.12 Tf
10.2 2.15977 Td
(P)Tj
/R55 0.12 Tf
-3.51939Td879697 Td
(6+)Tj
/09.88 11
-3.5 0 Td
(�c)299No(ust)]TJw73 0.122 Tf
31.2 0 Td
6[(W) Td
(�)Tj
/R55 0.12 Tf
4.68008326 0.12 Tf
11.1598 -6.osur4 Td
(p-cxt)Tj
0 11.1602 Td
(C)Tj
/R/R55 0.12 Tf
30.4801 -4Td
(b1 Td.8Td
Tp)-299e98.66(e)]TJ
509.2398 0
((Tj
/R
/R1s.2801 0 Td
(A)Tj
/R9.160216 Td
(that)Tj
37.7199 6 Td
(()Tj
/means.2801 7 Td
(some)Tj4.2801 5
((Tj
/Rparticular,9602 0 Td
(that)Tj
/R217 0.12 Tf
30.9602 0C)Tj
/R275 0.12 Tf
10.2 2.15977 Td
(+)Tj
/R217 0.12 Tf
14.6398 3.016 Td
(+)Tj
/RR326 0.12 Tf
8.76016 -5.28008 Td
(+)Tj
/R
/R161 0.12 Tf
27.6 5. 17.6398 2d
(Using)T55 0.12 Tf
12.1199 0 Td
(exist)T27.7199.12 Tf
26.2801 8 Td
(P)Tj
/R275 0.12 Tf
10.2 2.15977 Td
(P)Tj
/R55 0.122 Tf
14.6398 0 .88008 Td
(P)Tj
/R326 0.12 Tf
8.76016 -5.28008 Td
(barb)Tj
/R161 0.12 Tf
27.6 5.28008 Td
(barb)Tj281 0.12 Tf
6.95977 -5.88008 T2j
/R588 0.12 Tf
5.51991i016 0 Td
(A Td
(a)Tj
/R5lso.0398 0 Td
(~)Tj
/RH
48.8398 2 Td
[(no)299866(e)]TJ
22.5602 1 Td
(use)Tj000.59(w)]T6
37.6801 0 8this)Tj
/R161 0.12 Tf
30.0801 0 Td
(us)Tj
1275 0.12 Tf
10.2 2.15977 Td
(P)Tj
/R55 0.12 Tf
-3.51931577 Td
(6suc)2993(ust)]TJ
36.7199 53.6 Tdse)Tj00.69(eha))]T2.5602 0 Td
(()Tj
/R1aga4.280144 Td
(there)T6.5199 1 Td
(but)Tj
7.4 0 Td
Td
(a)Tj
13.2 0 -450 T98 Td
(C)Tj
/Rj
41.4 0 Td
Td
(~)Tj
/Rral)Tj
66.3602 0 2d
[(w)2998.001.34(alen2e))]TJ
81.2398 0 .1601fa

36 Matthew Hennessy and Julian Rathke

Soundness, Completeness and Proposition 6.4 allows us to now
on-

lude with the main result of the paper:

Corollary 6.10 If � j= P

�

=

xt

obs

Q if and only if � j= (� ` P) �

o

(� ` Q).

6.3 Example

The
hara
terisation of the previous se
tions provide a
onvenient
o-

indu
tive method for establishing
ontextual observational equivalen
e be-

tween terms. We provide a short example whi
h demonstrates the utility

of the bisimulation proof method. The pro
esses that we
onsider provide

two di�erent implementations of a produ
er/
onsumer unit server.

Clients send requests for servi
e along a global
hannel req, whi
h

must be a

ompanied by a reply
hannel whi
h has type at least R =

wh(wh>i; rh>i)i. The server
reates dedi
ated produ
e and
onsume
han-

nels, ex
lusively for the
lient,

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 37

but CU

1

6must T . The required T is given by

(new r : A

r

) req!hri r?((x; y) : (wh>i; rh>i)) x!hi!!hi

where A

r

is the type rwh(B;C)i. It is straightforward to show that this

an be typed by �

req

, that it is guaranteed by CU

1

but when applied to

CU

2

, may lead to a non-terminating
omputation.

It is well-known that
ontextual observational equivalen
e is insensitive

to su
h

38 Matthew Hennessy and Julian Rathke

and for any I :> p : B;
 : C, we have

I j= (�

A

` P

1

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 39

are two possibilities for these: an intera
tion between P

2

and
!

m

and an

intera
tion between P

2

and p!

k

. Note that in ea
h
ase the resulting state

is

P

2

j
!

m�1

j p!

k+1

for the former and

P

2

j
!

m+1

j p!

k�1

for the latter. In either
ase the total m+ k is invariant. This means that

the extra internal transitions exhibited by P

2

j
!

m

j p!

k

may be mat
hed

in R by an empty transition from P

1

j
!

n

.

It is worth mentioning here that it is not possible to observe output

transitions of the form p!hi from I; �

A

`P

2

j
!

m

j p!

k

as we have supposed

that I(p) :> B :> wh>i and thus
annot the read
apability required

to make this observation. Similarly, it is not possible to observe input

transitions of the form
?hi from I; �

A

` P

2

.

2

This short example demonstrates the use of a
o-indu
tive proof for

establishing
ontextual observational equivalen
e. The use of the bisimu-

lation method allows us to establish equivalen
e without quantifying over

all possible
lients for these servers. In e�e
t, the environment plays the

role of an arbitrary
lient.

7 Con
lusion

In this paper we have studied typed behavioural equivalen
es for the �-

al
ulus. In parti
ular we have shown that natural typed versions testing

and barbed
ongruen
es
an be
aptured by applying standard te
hniques

to a new lts of typed a
tions, Conf . Thus, at least in prin
iple, it should

be possible to use, or adapt, existing proof methodologies and veri�
ation

systems, [4, 5℄ to prove type dependent equivalen
es between pro
esses.

Admittedly the states, I; � ` P , in the lts are a priori
ompli
ated,
on-

sisting of a pro
ess term P , a type environment for its
omputing
ontext

I and a separate type environment for the pro
ess itself �. But the ob-

servant reader will have noti
ed that in the rules for generated Conf ,

in Figure 5, the last type environment � plays no role. Te
hni
ally its

presen
e has been
onvenient for deriving our results, whi
h depend on

the fa
t that pro
esses are well-typed with respe
t to some environment

oherent with I, but in an implementation of Conf they
ould be safely

omitted.

Typed pro
ess equivalen
es, as opposed to untyped ones, have nu-

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 41

equations holding in this setting vary
onsiderably from ours. For instan
e

the well-known Repli
ation Theorem of �-
al
ulus used to illustrate their

te
hnique fails to hold in the presen
e of equality testing.

Our system allows for a gradual in
rease in knowledge about types

of names and provides a fresh approa
h to understanding the e�e
ts of

subtyping on pro
ess equivalen
e.

Referen
es

[1℄ Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations

for the asyn
hronous �-
al
ulus. Theoreti
al Computer S
ien
e, 195(2):291{324,

30 Mar
h 1998.

[2℄ M. Boreale and D. Sangiorgi. Bisimulation in name-passing
al
uli without mat
h-

ing. In Pro
. 13th LICS Conf. IEEE Computer So
iety Press, 1998.

[3℄ G. Boudol. Typing the use of resour
es in a
on
urrent
al
ulus. In Pro
eedings

of the ASIAN'97, number 1345 in Le
ture Notes in Computer S
ien
e, pages 239{

253, 1997.

[4℄ R. Cleaveland, J. Parrow, and B. Ste�en. The
on
urren
y workben
h: A se-

manti
s based veri�
ation tool for �nite state systems. ACM Transa
tions on

Programming Systems, 15:36{72, 1989.

[5℄ Ran
e Cleaveland. The
on
urren
y fa
tory: A development environment for

on
urrent systems. In R. Alur and T. Henzinger, editors, Pro
eedings of CAV'96,

volume 1102 of Le
ture Notes in Computer S
ien
e, pages 398{401. Springer-

Verlag, 1988.

[6℄ C. Fournet and G.Gonthier. A hierar
hy of equivalen
es for asyn
hronous
al
uli

(extended abstra
t). In Pro
eedings of ICALP'98, volume 1443 of Le
ture Notes

in Computer S
ien
e, pages 844{855. Springer-Verlag, 1988.

[7℄ C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A
al
ulus of mo-

bile agents. In U. Montanari and V. Sassone, editors, Pro
eedings of CONCUR'96,

volume 1119 of Le
ture Notes in Computer S
ien
e, pages 406{421, Pisa, August

1996. Springer Verlag.

[8℄ M. Hennessy. An Algebrai
 Theory of Pro
esses. MIT Press, 1988.

[9℄ Kohei Honda and Mario Tokoro. On asyn
hronous
ommuni
ation semanti
s.

In P. Wegner M. Tokoro, O. Nierstrasz, editor, Pro
eedings of the ECOOP '91

Workshop on Obje
t-Based Con
urrent Computing, volume 612 of LNCS 612.

Springer-Verlag, 1992.

[10℄ A. Je�rey. A distributed obje
t
al
ulus. In Pro
. ACM Foundations of Obje
t

Oriented Languages. IEEE Computer So
iety Press, 2000.

[11℄ A. Je�rey and J. Rathke. A theory of bisimulation for a fragment of
on
urrent

ml with lo
al names. In Pro
. LICS2000, 15

th

Annual Symposium on Logi
 in

Computer S
ien
e, Santa Barbara, pages 311{321. IEEE Computer So
iety Press,

2000.

[12℄ Naoki Kobayashi. A partially deadlo
k-free typed pro
ess
al
ulus. In Pro
eedings,

Twelth Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages 128{139,

Warsaw, Poland, 29 June{2 July 1997. IEEE Computer So
iety Press.

[13℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.

[14℄ R. Milner. Comuni
ating and mobile systems: the �-
al
ulus. Cambridge Univer-

