ÌìÃÀ´«Ã½Ó°ÊÓ

School of Engineering and Informatics (for staff and students)

Analogue Communication and Propagation (H6107Z)

Analogue Communication, Propagation and Antenna

Module H6107Z

Module details for 2023/24.

15 credits

FHEQ Level 6

Module Outline

Radio to Optical propagation of electromagnetic waves, antennas design, and communications are fundamental in a vast array of applications ranging from radio and TV broadcasting to radars and satellite systems, cellular (4G and 5G and 6G), WiFi and IoT systems.
Using a combination of theory and practice, and drawing on latest research and industry standards, this module provides an in-depth exposure to principles and practice of analogue communications and propagation and antenna design, covering all relevant frequency ranges, including the conventional low and microwave frequencies as well as milimeterwave, terahertz ranges for 5G and 6G communications. You'll benefit from highly illustrative approach to fundamental theory combined with analysis, design, and operation for an array of practical applications from industry.

Module learning outcomes

Describe and design the propagation along transmission lines, attenuation and distortion, characteristic impedance, reflections and standing waves

Describe, design and evaluate electromagnetic wave propagation in free space, line of sight communications and design using Fresnel zone, power budget in satellite and mobile links, tropospheric and ionospheric propagation

Describe fundamental principles of antennas (including dipole, Yagi-Ueda, arrays, dish, planar, patch antennas, phased array anteanns) and analyse radiation pattern, reciprocity theorem, antenna gain and directivity

Software-based design and validation of basic and phased array antean antenna structures

Describe and analyse physical sources and statistical properties of electrical noise an interference, signal-to-noise ratio, noise figure, noise temperature, spectrum management and EMC, radio transmitter and receiver architecture.

TypeTimingWeighting
Unseen ExaminationSemester 1 Assessment Week 2 Mon 02:1580.00%
Coursework20.00%
Coursework components. Weighted as shown below.
Problem SetT1 Week 6 50.00%
Problem SetT1 Week 9 50.00%
Timing

Submission deadlines may vary for different types of assignment/groups of students.

Weighting

Coursework components (if listed) total 100% of the overall coursework weighting value.

Prof Maziar Nekovee

Assess convenor
/profiles/410738

Please note that the University will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the University keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.

The University reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the University. If there are not sufficient student numbers to make a module viable, the University reserves the right to cancel such a module. If the University withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.

School of Engineering and Informatics (for staff and students)

School Office:
School of Engineering and Informatics, ÌìÃÀ´«Ã½Ó°ÊÓ, Chichester 1 Room 002, Falmer, Brighton, BN1 9QJ
ei@sussex.ac.uk
T 01273 (67) 8195

School Office opening hours: School Office open Monday – Friday 09:00-15:00, phone lines open Monday-Friday 09:00-17:00
School Office location [PDF 1.74MB]